Improving Short Job Latency Performance in Hybrid Job
Schedulers with Dice

Wei Zhou
University of Virginia
Charlottesville, USA
wzbad@virginia.edu

ABSTRACT

It is common to find a mixture of both long batch jobs and latency-
sensitive short jobs in enterprise data centers. Recently hybrid
job schedulers emerge as attractive alternatives of conventional
centralized job schedulers.

In this paper, we conduct trace-driven experiments to study the
job-completion-delay performance of two representative hybrid job
schedulers (Hawk and Eagle), and find that short jobs still encounter
long latency issues due to fluctuating bursty nature of workloads.
To this end, we propose Dice, a general performance optimiza-
tion framework for hybrid job schedulers, to alleviate the high
job-completion-delay problem of short jobs. Dice is composed of
two simple yet effective techniques: Elastic Sizing and Opportunis-
tic Preemption. Both Elastic Sizing and Opportunistic Preemption
keep track of the task waiting times of short jobs. When the mean
task waiting time of short jobs is high, Elastic Sizing dynamically
and adaptively increases the short partition size to prioritize short
jobs over long jobs. On the other hand, Opportunistic Preemption
preempts resources from long tasks running in the general partition
on demand, so as to mitigate the “head-of-line” blocking problem
of short jobs.

We enhance the two schedulers with Dice and evaluate Dice
performance improvement in our prototype implementation. Exper-
iment results show that Dice achieves 50.9%, 54.5%, and 43.5% im-
provement on 50th-percentile, 75th-percentile, and 90th-percentile
job completion delays of short jobs in Hawk respectively, as well as
33.2%, 74.1%, and 85.3% improvement on those in Eagle respectively
under the Google trace, at low performance costs to long jobs.

CCS CONCEPTS

- Software and its engineering — Scheduling.

KEYWORDS

big data, job scheduling, resource management

ACM Reference Format:
Wei Zhou, K. Preston White, and Hongfeng Yu. 2019. Improving Short Job La-
tency Performance in Hybrid Job Schedulers with Dice. In 48th International

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICPP 2019, August 5-8, 2019, Kyoto, Japan

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6295-5/19/08....$15.00
https://doi.org/10.1145/3337821.3337851

K. Preston White
University of Virginia
Charlottesville, USA
kpwhite@virginia.edu

Hongfeng Yu
University of Nebraska-Lincoln
Lincoln, USA
yu@cse.unl.edu

Conference on Parallel Processing (ICPP 2019), August 5-8, 2019, Kyoto, Japan.
ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3337821.3337851

1 INTRODUCTION

Big data analytics workloads in large-scale enterprise data centers
tend to be more and more intensive, complex, and diverse, as evident
in latest studies of job traces collected from production environ-
ments [3, 10, 11, 24, 26]. We observe a mixture of both long jobs and
latency-sensitive short jobs in enterprise data centers. The latency
of short jobs, that is, job completion delay, matters to users because
most (if not all) short jobs are user-facing interactive applications
like ad-hoc queries for interactive data analysis or personalized
search. This fact demands modern-day big data jobs schedulers to
be able to schedule large number of different types of jobs with
corresponding resource and latency requirements from a variety of
analytics frameworks like Hadoop MapReduce [30], Dremel [22],
Impala [19], Storm [28], Spark [31], and Flink [7] in timely fashion.

Centralized job schedulers, like YARN [29], Mesos [17], Omega[25],
achieve high resource efficiency since they usually have a global
view of cluster resource allocations and demands of batch jobs. How-
ever, their job scheduling delay becomes non-trivial when schedul-
ing a great amount of latency-sensitive short jobs. Distributed job
schedulers like Apollo [5] and Sparrow [23] successfully minimize
job scheduling delay with parallel and independent scheduling
decision-making of multiple schedulers but they fail to allocate
resources efficiently.

Recognizing the mixed nature of long batch jobs and latency-
sensitive short jobs, Hawk [16], Eagle [14], Phoenix [27] hybrid job
schedulers, which in general consist of one centralized scheduler
for long jobs and multiple distributed schedulers for short jobs,
have emerged as promising alternatives of existing job schedulers
for better latencies of short jobs and cluster utilization.

Although the existing hybrid job schedulers have attempted to
address the high-latency issue of short jobs, our experiment studies
show that they still cannot fully handle intermittent burstiness
of workloads, which in turn causes short jobs to suffer from long
latency issues (see Section 2.2 for more detail). To this end, we pro-
pose a general performance optimization approach to hybrid job
schedulers, called “Dice”, to mitigate the long job-completion-delay
issue of short jobs with two simple yet effective techniques: Elastic
Sizing and Opportunistic Preemption. Elastic Sizing and Oppor-
tunistic Preemption continuously monitor the task waiting time
of short jobs. Elastic Sizing dynamically and adaptively increases
the dedicated short partition size to prioritize short jobs over long
jobs when the mean task waiting time of short jobs is detected high.
On the other hand, Opportunistic Preemption preempts resources
from long tasks running in the general partition on demand, so

https://doi.org/10.1145/3337821.3337851
https://doi.org/10.1145/3337821.3337851

ICPP 2019, August 5-8, 2019, Kyoto, Japan

Job Queue

JobQueue Job Queue Job Queue

Distributed) ~ (Distributed) o Centralized Distributec)
Scheduler) \Scheduler) . R Scheduler v \Scheduler
/ % oS
)

000000000

e J L

enenp eqoid
apoN JaxIoMm

Y Y
short partition general partition

Figure 1: A general architecture of hybrid job schedulers

as to mitigate the “head-of-line” blocking problem of short jobs.
Because the two schemes of Dice are orthogonal to the general
architecture of existing hybrid job schedulers, Dice can be easily
integrated into them. To the best of our knowledge, Dice is the
first general performance optimization framework for hybrid job
schedulers.

We enhance the Hawk and Eagle job schedulers with Dice in a
widely-used trace-driven simulator, and evaluate the job-completion-
delay performance improvement on short jobs by Dice with three
representative traces of enterprise production workloads. Extensive
experiment results show that Dice is able to significantly improve
latencies of short jobs, at a relatively low cost by marginally in-
creasing the latencies of long jobs. For example, under the Google
trace, Dice achieves 50.9%, 54.5%, and 43.5% improvement on 50th-
percentile (P50), 75th-percentile (P75), and 90th-percentile (P90)
job completion delays of short jobs in Hawk respectively, as well
as 33.2%, 74.1%, and 85.3% improvement on those metrics in Eagle
respectively, while lengthening the P50 job completion delay of
long jobs by 4.9% in Hawk and the P75 job completion delay of
long jobs by 14.6% in Eagle respectively.

In summary, we make the following contributions in this paper:

e We identify that long task waiting time of short jobs for
hybrid job schedulers is one main cause of the long job
completion delay of shorts jobs under fluctuating bursty
workloads;

e We propose the Elastic Sizing scheme to dynamically and
adaptively increase the dedicated short partition size to pri-
oritize short jobs over long jobs on demand;

e We propose the Opportunistic Preemption scheme to pre-
empt resources from long tasks running in the general par-
tition on demand, so as to mitigate “head-of-line” blocking
problem of short jobs;

e We conduct extensive trace-driven experiments and vali-
date the effectiveness of the two schemes individually and
combinatorially.

2 BACKGROUND AND MOTIVATIONS

2.1 Background

Recently, hybrid job schedulers have been proposed to deliver both
high cluster utilization and responsiveness of short jobs under
mixed workloads in large-scale data centers. Hawk [16], Eagle [14],
and Phoenix [27] are representative of state-of-the-art work in this
field. Figure 1 illustrates a general architecture of hybrid job sched-
ulers. As shown in the figure, a cluster consists of many worker

Wei Zhou, K. Preston White, and Hongfeng Yu

nodes where each node maintains one probe queue of tasks. For hy-
brid job schedulers, the cluster is split into two exclusive partitions:
general partition and short partition. The centralized job scheduler
is meant to schedule only long jobs on the general partition, and
the size of the general partition is determined by the portion of
time cluster resources are spent on long jobs. The short partition
is dedicated for executing short jobs, while multiple Sparrow [23]-
like distributed schedulers are responsible for queuing and placing
only short jobs on both partitions in parallel. Like Sparrow, each
distributed scheduler uses the “batch sampling” scheme to place
probes of short tasks onto the least loaded of randomly chosen
worker nodes, and assigns short tasks to the worker nodes only
until they are ready to run the tasks, which is called “late binding”.
Because of the high parallelism of job placement by distributed
schedulers, short jobs are expected to bear very short job queueing
delay.

To compensate occasional poor scheduling decisions by dis-
tributed schedulers, Hawk [16] employs “randomized task stealing”,
which steals tasks of short jobs behind running and waiting tasks
of long jobs from busy nodes to idle nodes in the general partition.
Eagle [14] proposes the “Succinct State Sharing” (SSS) mechanism
to convey the information about locations where long jobs are
executing among distributed schedulers, so as to avoid the head-
of-line blocking for short jobs. Different from Sparrow, a probe in
Eagle represents not one single task of a job, but the whole job.
As a result, Eagle introduces “Sticky Batch Probing” (SBP) to keep
the probe of a short job stay in the queue until all the remaining
tasks of the corresponding job are completed. Phoenix [27] is an
extension to the Eagle scheduler to take job placement constraints
into considerations.

2.2 Motivations

As Hawk [16] is shown to improve the P50 and P90 job-completion-
delay performance of short jobs by 80% and 90% respectively com-
pared with Sparrow, and Eagle [14] further performs up to 80%
better than Hawk, our question is raised: is short job-completion-
delay performance good enough under latest hybrid job schedulers?

In order to understand performance behaviors of short jobs un-
der hybrid job schedulers, we conduct a trace-driven experimental
study with the open-source Eagle simulator, which is able to simu-
late both Hawk and Eagle schedulers [13]. In our experiments, we
try to mimic the same configuration parameters used in Eagle. In
particular, we simulate a cluster of 4000 nodes while 2% of nodes are
reserved for the short partition because task-seconds of short jobs
account for 2% overall task-seconds in the Yahoo trace [11]. Then
we feed the Yahoo trace to the simulator as input workload. The
Yahoo trace includes 24262 jobs in total where short jobs account
for 90.6% (the jobs with the mean task runtime of smaller than 90.58
seconds are defined as short jobs for the Yahoo trace, that is “cutoff
task runtime” to distinguish short and long jobs).

We are especially interested in understanding the impact of the
task waiting time on job completion delay of short jobs. Therefore,
for every 60-second time window in a simulation run, we first
collect and report the ratio of job completion delay to mean task
runtime of its corresponding short job. Considering an example
case where there are two short jobs with 50-second and 5-second

Improving Short Job Latency Performance in Hybrid Job Schedulers with Dice

™
— Hawk — Eagle

2000

1500

1000

500

Ratio of job completion delay to mean task runtime (x)

TLI| Vvt (A A(WARTINT AT IR, AN A b i
60000 80000 100000 120000 140000 160000 180000
Time (seconds)

il S
20000 40000

Figure 2: Ratio of job completion delay to mean task runtime
for short jobs under the Yahoo trace

mean task runtime respectively, the same job completion delay of
100 seconds may result in totally different user experience. Hence
we believe this ratio, instead of the absolute value of job completion
delay, is a better indicator of lags caused by resource contentions.
Figure 2 illustrates the ratio of job completion delay to mean task
runtime of short jobs for Hawk and Eagle schedulers under the
Yahoo trace.

Second, we also collect and report the mean task waiting time
of short jobs until all the jobs are completed for every 60-second
time window. The task waiting time for a given task is defined as
the duration from the time when its corresponding job is submitted
to the time when the task is executed. In general, the task waiting
time consists of task scheduling delay and probe queueing delay
on the worker node. With multiple and parallel distributed sched-
ulers dedicated for scheduling short jobs, task scheduling delay
is guaranteed to be negligible. So the task waiting time of short
jobs is actually determined by probe queueing delay. In case the
task waiting time for a job outweighs mean task runtime, the task
waiting time thus dominates job completion delay. Figure 3 plots
the mean task waiting time of short jobs under Hawk and Eagle
schedulers under the Yahoo trace.

From Figures 2 and 3, we have two observations: (1) spikes of
the mean task waiting time are correlated and contribute to spikes
of job completion delay for short jobs; and (2) spikes of the mean
task waiting time can be as high as more than 3000 seconds, which
is (3000/90.58 = 33.1) times cutoff task runtime for short jobs.

The above observations clearly dictate that shortening the task
waiting time is key and imperative to improve job completion delay
of short jobs. As we know for hybrid job schedulers a dedicated
short partition is used to ensure low latency of short jobs, our
first idea is to rethink the sizing of the short partition for better
latency performance of short jobs. On the other hand, since short
tasks could be affected by the head-of-line blocking in the general
partition, our second idea is to explore the task preemption option.

3 ELASTIC SIZING

In this section, we first quantitatively evaluate the impact of the
short partition size on job completion delay as well as cluster uti-
lization. Then we discuss how to strike a good balance between

ICPP 2019, August 5-8, 2019, Kyoto, Japan

— Hawk — Eagle

g
3

2000

1500

1000

Mean task waiting time (seconds)

g
3

20000 40000 60000 80000 100000 120000 140000 160000 180000
Time (seconds)

Figure 3: Mean task waiting time of short jobs under the Ya-
hoo trace

job-completion-delay performance of short jobs and cluster utiliza-
tion with Elastic Sizing.

3.1 Impact of Short Partition Size

Intuitively, a straightforward way to shorten the task waiting time
and resulting job completion delay of short jobs is to increase the
size of the dedicated short partition. Therefore, we evaluate job-
completion-delay performance and cluster utilization as a function
of different short partition sizes with the aforementioned simulator.
Table 1 shows P50, P75, and P90 job completion delays of short
and long jobs in both Hawk and Eagle schedulers with the short
partition sizes of 2%, 4%, 6%, and 8% under the Yahoo trace. One can
see that for Hawk, P50, P75, and P90 job completion delays of short
jobs can be improved by 57.8%, 70.3%, and 77.9% respectively if the
short partition size is increased from 2% to 8%. On the other hand,
affected by fewer worker nodes available for long jobs, P50, P75, and
P90 job completion delays of long jobs for the 8% short partition size
are 48.0%, 30.0%, and 19.0% higher than those for 2% short partition
size respectively. It clearly implies that a bigger size of the dedicated
short partition contributes to significant performance improvement
on job completion delay of short jobs, with a non-trivial cost to job
completion delay of long jobs. We observe a similar pattern from
experiment results for Eagle as well.

Let’s then take a close look at cluster utilization. Figure 4 plots
cluster utilization trends in Eagle under Yahoo trace with 2%, 4%,
6%, and 8% short partition sizes. It is clear that cluster utilization is
inversely proportional to the short partition size within a certain
range. In particular, for the 8% short partition size (that is, 92%
general partition size), cluster utilization ranges from 92% to ap-
proximately 94% during most of the time, with sometimes 100%
peaks. This is expected considering task-seconds of short jobs ac-
count for 2% overall task-seconds for the Yahoo trace. Therefore,
a bigger size of the short partition could result in lower cluster
utilization.

3.2 Elastic Sizing

Motivated by the above observations and implications, we pro-
pose Elastic Sizing, which dynamically and adaptively adjusts the
short partition size according to the task waiting time of short
jobs, so as to improve job-completion-delay performance of short

ICPP 2019, August 5-8, 2019, Kyoto, Japan

Table 1: Job completion delays under the Yahoo trace as a
function of different short partition sizes

Short Job Completion Delay (seconds)
Partition Short Jobs Long Jobs
Hawk P50 P75 P90 P50 P75 P90
2% 327.7 | 687.1 | 1226.4 | 3145.2 | 6837.4 | 10089.1
4% 191.2 | 322.3 | 457.7 | 3455.5 | 7467.1 | 10754.7
6% 157.0 | 243.8 | 331.6 | 3947.6 | 8168.3 | 11447.7
8% 138.2 | 204.3 270.8 4654.6 | 8891.4 | 12010.3
Eagle P50 P75 P90 P50 P75 P90
2% 29.8 59.1 147.3 3160.0 | 6837.7 | 10070.3
4% 23.2 42.0 66.0 3455.6 | 7469.1 | 10764.3
6% 22.4 40.4 62.9 3943.5 | 8166.6 | 11391.0
8% 22.1 39.9 62.1 4650.2 | 8901.9 | 12025.4

10O rimpmy WY Vi [MWW TRV (W0 ()

' |
|

®
3

o
3

\
!

IS
S

Cluster Utilization (%)

20 |
\ 0

2%

4% 6% 8% |

25000 50000 75000 100000 125000 150000 175000
Time (seconds)

Figure 4: Cluster utilization in Eagle under the Yahoo trace

jobs, while minimizing adverse impacts on the performance of long
jobs and overall cluster utilization. Elastic Sizing enforces sizing
adjustment of the short partition by converting a number of the
general-partition nodes into the short-partition nodes throughout
consecutive time windows. In particular, the basic workflow of
Elastic Sizing is as follows:

o At the start of a time window, the centralized scheduler of
hybrid job schedulers collects the task waiting time of short
jobs during last time window from all worker nodes and
computes the mean task waiting time;

o The centralized scheduler then decides the number of nodes
in the general partition should be temporally converted into
the short-partition nodes during the current time window.
Implementing node conversion is simple: the centralized
scheduler puts the converted nodes onto a blacklist, and
avoids scheduling probes of newly-arrived long jobs onto the
blacklisted nodes during the current time window. Note that
Elastic Sizing requires no changes to distributed schedulers;

o At the end of a time window, the centralized scheduler emp-
ties the blacklist.

We then discuss the algorithm to determine the number of nodes
to convert. We define the lower bound of the short partition size
as MinShortPartitionSize number of nodes, the upper bound of the

Wei Zhou, K. Preston White, and Hongfeng Yu

actual short partition size actual general partition size

(00000000—— 0000

upper bound of
nd of short partition
short partition

Figure 5: An illustrative example of Elastic Sizing

short partition size as MaxShortPartitionSize number of nodes. We
also define the mean task waiting time during last time window
as CurrMeanTaskWaitingTime and the corresponding maximum
mean task waiting time of short jobs as MaxTaskWaitingTime. If
CurrMeanTaskWaitingTime is greater than MaxTaskWaitingTime,
(MaxShortPartitionSize — MinShortPartitionSize) general-partition
nodes are converted into the short-partition nodes by Elastic Siz-
ing. Otherwise, p X (MaxShortPartitionSize - MinShortPartitionSize)
number of nodes will be converted, where p € [0.0,1.0]. Figure 5
illustrates an example case of Elastic Sizing.

We are interested in the relationship between the rate of node
conversions and resulting performance gain. Therefore, we con-
sider and evaluate the below 3 models to compute p because they
reflect three different node-conversion strategies: linear conver-
sion, slow-start conversion, and fast-start conversion respectively.
This is achieved by leveraging the different responsiveness rate of
functionsy = x, y = x2, and y = v/x, where x € [0.0,1.0].
CurrMeanTaskWaitingTime

MaxTaskWaitingTime
CurrMeanTaskWaitingTime)2
MaxTaskWaitingTime

e Linear model: p =

e Square model: p = (

CurrMeanTaskWaitingTime
MaxTaskWaitingTime

e Square-Root model: p = \/

In summary, Elastic Sizing aims to prioritize short jobs over long
jobs when short jobs face high task waiting time, by proactively
constraining the number of nodes available for scheduling long
jobs and thus allocating more resources to short jobs.

3.3 Searching Key Parameter Space

In this subsection, we first conduct experiments to understand the
relationship between the performance impact and node conver-
sion models. Secondly, we study the performance improvement by
Elastic Sizing with different upper bounds of the short partition
size.

In the first experiment, we configure the upper bound of the
short partition size to 10% and the maximum mean task waiting
time of short jobs to 1000 seconds. Then we run the simulations
of Hawk and Eagle schedulers with different models in Elastic
Sizing under the Yahoo trace. Figure 6 depicts the job-completion-
delay performance in Hawk and Eagle schedulers enhanced with
the three node-conversion models of Elastic Sizing. We can see
from Figures 6a and 6b, Hawk with Elastic Sizing’s Square-Root
model is able to shorten P50, P75, and P90 job completion delays
of short jobs by 34.6%, 43.6%, and 53.5% respectively compared
with the original Hawk scheduler. However, this is achieved at the
cost of 2.9% and 2.1% longer P75 and P90 job completion delays of
long jobs respectively. It is expected because Square-Root model
opts to aggressively convert the general-partition nodes into the
short-partition nodes. As a counterpart, Square model responds

Improving Short Job Latency Performance in Hybrid Job Schedulers with Dice

ICPP 2019, August 5-8, 2019, Kyoto, Japan

H E 3 3
=) =
]] 210 8
T 10 T fiv] PR pa—
2 s TN s | N 2 N
° 5 o o
8o goe Zos
N |
Sos Zos \ g0e S
: AN . -
3 3 3 3
Kl K ° T
£ 3., ?\ Soal [Zos
c c c c
S S \ S S
o 7} © °
B§o2 Qo2 \ 502 02
£ £ £ £
S 2 P50 [=J P75 =1 P90 S 2 P50 S P75 (] P90 | S V 2 P50 [=J P75 =1 P90 S £ P50 S P75 [0 P90
200 } T T pE—— 20 } ¥ . ey g 200 vy AN 200 x ey e
X Linear Square Square-Root 2 Linear Square Square-Root 2 Linear Square Square-Root =X Linear Square Square-Root
Elastic Sizing Model Elastic Sizing Model Elastic Sizing Model Elastic Sizing Model
(a) Short jobs in Hawk (b) Long jobs in Hawk (c) Short jobs in Eagle (d) Long jobs in Eagle

Figure 6: Job completion delays for Elastic Sizing with different models normalized to Hawk and Eagle

to the increase of the task waiting time of short jobs so slowly
that insufficient nodes are converted in time, which is evident in
that trivial improvement on job completion delay performance of
short jobs is observed for Square model. In contrast, Elastic Sizing’s
Linear model achieves 13.2%, 15.6%, and 24.3% improvement on P50,
P75, and P90 job completion delays for short jobs respectively, with
a negligible impact on job completion delay for long jobs. In the
meantime, we observe from Figures 6¢ and 6d, Eagle is insensitive
to different node-conversion models of Elastic Sizing and all the
models are able to deliver more than 4% and 23% improvement on
P75 and P90 job completion delays for short jobs.

In the second experiment, we vary the upper bounds of the short
partition size from 4%, 6%, 8%, 10%, 12%, 14% to 16% with a step
of 2% (Note that the lower bound of the short partition size is 2%
under Yahoo trace by default), and use the Linear model. Figure 7
plots the job-completion-delay performance of Hawk and Eagle
enhanced with Elastic Sizing as a function of different upper bounds
of the short partition size. One can observe from Figures 7a and 7c:
(1) Elastic Sizing with 16% upper bound of the short partition size
improves P50, P75, and P90 job completion delay performance of
short jobs by 18.3%, 22.3%, and 33.3% respectively for Hawk, and
improves them by 2.9%, 5.3%, and 26.4% respectively for Eagle; (2)
with the increase of the upper bound of the short partition size,
Elastic Sizing is able to translate higher node conversion into lower
job completion delays of short jobs; and (3) Hawk with Elastic
Sizing is more sensitive to the upper bound of the short partition
size than Eagle with Elastic Sizing.

4 OPPORTUNISTIC PREEMPTION

In this section, we first introduce the background of task preemption
in the context of big data job scheduling. Then we present the basic
idea of Opportunistic Preemption and explore its key parameter
space.

4.1 Task Preemption

Process preemption is a commonly-used mechanism to enforce
the time-slice quota of running processes and/or the prioritiza-
tion of higher-priority processes over lower-priority processes in
modern operating systems. Recently big data job schedulers have
employed task preemption for fair resource sharing and job prior-
itization enforcement as well. Killing tasks is a simple but costly
way to implement preemption because made progress of the tasks
is lost and the killed tasks need to be restarted from scratch. On

the other hand, job schedulers like Amoeba [4], Natjam [12], etc.
checkpoint tasks’ progress periodically to save intermediate results
to persistent storage. This allows the tasks to be suspended and re-
sumed when needed, which is usually called “checkpointing-based
preemption” [20]. Thus whether to enable preemption in job sched-
uling is mainly determined by the efficiency and overhead of task
suspension and resumption with checkpointing. Via lightweight
container-based virtualization, Big-C [9] implements immediate
preemption and graceful preemption strategies to make tasks pre-
emptive with low cost and latency. Based on these two strategies,
Big-C develops a preemptive fair share scheduler to preempt re-
sources from long jobs when short jobs arrive. Inspired by Big-C,
Kairos [15] implements time sharing on all worker nodes through
container-based task preemption.

Although low latency of suspending and saving task context is
achieved with container-based preemption under general work-
loads, Big-C’s experiment results show that Spark tasks with it-
erative computation are susceptible to high resumption overhead.
More importantly, latest studies [8, 21] show that Java Virtual Ma-
chine (JVM) warm-up overheads, e.g. class loading and byte-code
interpretation, play an important role in short job execution while
many popular data analytic frameworks including Hadoop [30] and
Spark [31] are built upon JVM. For example, compute-intensive
workloads like Spark queries could take 21 seconds on average on
JVM warm-up, while IO-intensive workloads like HDFS reads could
also spend 33% execution time on warm-up [21].

Without careful considerations of resumption and JVM warm-up
overheads, blind preemption, even with low-cost container-based
preemption scheme like Big-C, may result in both lengthened job
completion delay of short jobs and low cluster utilization.

4.2 Opportunistic Preemption

Keeping benefits and possible overheads of task preemption in mind,
we propose Opportunistic Preemption, which judiciously preempts
resources of long tasks only when the task waiting time of short
jobs is high. Different from Big-C that always preempts resources
from long jobs when short jobs arrive to enforce share fairness
and Kairos that always preempts resources from running jobs to
enforce quota-based time sharing, Opportunistic Preemption aims
to mitigate long task waiting time for short jobs with preemption
on demand, while avoiding high resumption overheads of the above
“always-on” preemption schemes.

ICPP 2019, August 5-8, 2019, Kyoto, Japan

Wei Zhou, K. Preston White, and Hongfeng Yu

3

—e— P50

—— P75 - P90 —— P50 —+— P75 -»- P90

|
H

&

—— P50 —— P75 - P90 —— P50 —+— P75 - P90

Job Completion Delay Normalized to Hawk

Job Completion Delay Normalized to Hawk

4% 6% 8% 10% 12% 14% 16%
Upper Bound of Short Partition Size

4% 6% 8% 10% 12% 14% 16%
Upper Bound of Short Partition Size

(a) Short jobs in Hawk (b) Long jobs in Hawk

Job Completion Delay Normalized to Eagle
X
Job Completion Delay Normalized to Eagle

4% 6% 8% 10% 12% 14% 16%
Upper Bound of Short Partition Size

4% 6% 8% 10% 12% 14% 16%
Upper Bound of Short Partition Size

(c) Short jobs in Eagle (d) Long jobs in Eagle

Figure 7: Job completion delays for Elastic Sizing with different upper bounds of the short partition size normalized to Hawk

and Eagle

Similar to Elastic Sizing, the centralized scheduler with Oppor-
tunistic Preemption enabled periodically collects and aggregates
the task waiting time of short jobs during last time window from
all worker nodes. When the computed mean task waiting time of
short jobs becomes high, Opportunistic Preemption is activated.
The question is: how many and what long tasks should be pre-
empted? Considering a data center consisting of tens of thousands
of worker nodes and the centralized scheduler does not have de-
tailed information about the running task and the probe queue for
every worker node, Opportunistic Preemption computes the total
number of needed preemption candidates according to the extent of
the mean task waiting time of short jobs and then opts to randomly
select worker nodes in the general partition. In particular, the basic
workflow of Opportunistic Preemption is as follows:

o At the start of a time window, the centralized scheduler for
hybrid job schedulers collects the task waiting time of short
jobs during last time window from all worker nodes and
computes the mean task waiting time;

e The centralized scheduler then computes the number of
nodes in the general partition for preemption candidacy (say
n), and sends preemption requests to randomly-chosen n
nodes;

o For a node receiving a preemption request, it will save in-
termediate results of and then suspend the running task if
the following four conditions are all met: (1) a long task is
running on the node; (2) no other long tasks are suspended
for the node; (3) the number of suspensions for the running
task is less than a predefined maximum number of suspen-
sions for a task under preemption; and (4) there are probes
of short jobs waiting in the probe queue;

e When the task suspension is completed, the total number
of suspensions for the task is incremented by one. A timer
that is used to stop suspension with a predefined timeout
starts ticking. In the meantime, the node will fetch the probe
of a short task according to local scheduling algorithms like
SRTF (Shortest Remaining Time First) in Eagle or FIFO (First
In First Out) in Hawk, and execute the chosen short task;

e When the timer expires, the node will resume the suspended
task after the currently running task is completed.

We then discuss the key parameter space of Opportunistic Pre-

emption. Similar to Elastic Sizing, we define the current short par-
tition size as CurrShortPartitionSize number of nodes, the mean

task waiting time of short jobs during last time window as Cur-
rMeanTaskWaiting Time and the corresponding maximum mean task
waiting time of short jobs as MaxTaskWaitingTime. If CurrMean-
TaskWaiting Time is greater than MaxTaskWaitingTime, Opportunis-
tic Preemption sends preemption requests to CurrShortPartitionSize
X Multiplier number of randomly-chosen nodes in the general
partition. Otherwise, p X (CurrShortPartitionSize X Multiplier) pre-
emption requests will be sent, where p € [0.0,1.0]. Multiplier is
meant to compensate unfulfilled preemption requests due to the
randomization nature of choosing preemption candidates. We con-
sider the same Linear, Square, Square-Root models for p as Elastic
Sizing.

In summary, Opportunistic Preemption aims to mitigate the
head-of-line blocking issues caused by long tasks to lower long task
waiting time of short jobs, with on-demand task preemption.

4.3 Searching Key Parameter Space

In the first experiment, we assume Opportunistic Preemption is also
built on lightweight container-based virtualization, and configure
task suspension delay to 3 seconds and task resumption delay to
10 seconds, as on par with experiment results in [8]. Then we
run the simulations of Hawk and Eagle schedulers with different
Opportunistic Preemption models under the Yahoo trace. We also
configure the suspension duration to 100 seconds and the maximum
number of allowed preemptions per task to 2. Figure 8 depicts the
job-completion-delay performance of Hawk and Eagle schedulers
with different Opportunistic Preemption models.

As shown in Figures 8a and 8c, Opportunistic Preemption is
able to consistently improve job completion delays of short jobs
under Hawk and Eagle schedulers. For example, Opportunistic
Preemption with Square-Root model improves P90 job completion
delay of short jobs under Eagle by up to 41.3% while Square model
improves P90 job completion delay under Hawk by up to 21.3%.
Moreover, experiment results also reveal different characteristics
of Opportunistic Preemption compared with Elastic Sizing. First,
Opportunistic Preemption is able to shorten job completion delay
of short jobs under Eagle more significantly than Elastic Sizing.
Second, Square-Root model is not always able to deliver the most
performance gains for short jobs with Hawk (see Figure 8a) in spite
of its aggressive nature, while it could cause the most performance
loss for long jobs (20% as in Figure 8b). Third, Linear and Square

Improving Short Job Latency Performance in Hybrid Job Schedulers with Dice

ICPP 2019, August 5-8, 2019, Kyoto, Japan

2 P50 =3 P75 P90
T ! Ny 4

=3 P75
g ~r

P90

>m P50 =3 P75 2 P50 =3 P75
x r NP} ry 1 r 7

Job Completion Delay Normalized to Hawk

Job Completion Delay Normalized to Hawk

Linear Square Square-Root
Opportunistic Preemption Model

Linear Square Square-Root
Opportunistic Preemption Model

(a) Short jobs in Hawk (b) Long jobs in Hawk

Job Completion Delay Normalized to Eagle

Job Completion Delay Normalized to Eagle

Linear Square Square-Root

Linear Square Square-Root a
Opportunistic Preemption Model

q
Opportunistic Preemption Model

(c) Short jobs in Eagle (d) Long jobs in Eagle

Figure 8: Job completion delays for Opportunistic Preemption with different models normalized to Hawk and Eagle

¥ ¥ o o
E’ 11 E D — _ E 11 5 11
gm Em PR, ‘2“’ 510
8 8 T L R s
Foo Booy T o T Fe
H 2 s s
Sos Sos Zos Sos
2 L e k)
$ $ I e — $
a o o | T o
597 go7 SOT{ T c o7
S 2 2 8
K] 9]]
‘Elns gus Eus ‘Elns
8 —— PS50 —— P75 - P90 S —— P50 —— P75 -=- P90 S —e— P50 —— P75 -=- P90 8 —— P50 —~— P75 -- P90
g 05 g 05 -g 05 -g 0.5
= 0.5X 1.0X 2.0 = 0.5X 1.0X 2.0X = 05X 1.0X 2.0X = 0.5X 1.0X 2.0
Multiplier Multiplier Multiplier Multiplier
(a) Short jobs in Hawk (b) Long jobs in Hawk (c) Short jobs in Eagle (d) Long jobs in Eagle

Figure 9: Job completion delays for Opportunistic Preemption with different multipliers normalized to Hawk and Eagle

models can achieve similar performance gains but Linear model
tends to have more performance loss for long jobs.

The second experiment is to evaluate the impact of different
multipliers. We vary the multiplier values from 0.5%, 1.0X, to 2.0X.
Figure 9 depicts the job-completion-delay performance of Hawk
and Eagle schedulers with different Opportunistic Preemption mul-
tipliers. As expected, with the increase of multiplier, we can see
better improvement on the job-completion-delay performance of
short jobs (especially under Eagle) as well as higher cost on job
completion delay for long jobs (especially for Hawk). It suggests
that Eagle needs an aggressive interference to alleviate long job
completion delay of short jobs as its cluster resource is heavily
utilized compared with Hawk. This implies that 1.0x multiplier
strikes a balance between performance gains on short jobs and
performance loss on long jobs.

5 PUTTING IT ALL TOGETHER: DICE

A natural idea is to enable both Elastic Sizing and Opportunistic
Preemption, which becomes Dice. Dice leverages the commonality
of monitoring the mean task waiting time of short jobs in both
schemes and makes integration simple. Dice adds the logic into
the centralized job scheduler to adjust the short partition size and
preempt resources of long jobs when the mean task waiting time
of short jobs is high during a time window. On the other hand,
Dice recognizes the fact of conservative but nearly cost-free nature
of Elastic Sizing and aggressive but potentially costly nature of
Opportunistic Preemption, and supplements each other into one
unified approach.

In essence, Dice introduces a feedback loop into hybrid job sched-
ulers for performance optimizations. Latency awareness in Dice
enables performance monitoring for short jobs, then actions are

taken to activate the two proposed optimizations when performance
is below expectation.

6 PERFORMANCE EVALUATIONS
6.1 Experimental Setup

We implement a Dice prototype and evaluate its performance in a
trace-driven simulator, which is also used to evaluate Sparrow [23],
Hawk [16], Eagle [14], Phoenix [27], and Kairos[15]. We feed the
simulator with three traces representative of enterprise workloads
in large data centers. In particular, we use the Yahoo and Cloudera
traces [10, 11], as well as the Google trace [24, 26]. Table 2 shows
the key job characteristics of the three traces, where the percentage
of task-seconds of short jobs determines the lower bound of the
short partition size.

In our experiments, we simulate clusters of 3000, 4000, and 5000
worker nodes using Yahoo trace and 11000, 12000, and 13000 worker
nodes using Cloudera and Google traces to evaluate Dice perfor-
mance under heavy, medium-heavy, and medium loads respectively.
Each worker node has one single core and maintains one probe
queue. Since job arrival timestamps are constant during trace re-
play in the simulations, varying the total number of worker nodes
actually varies the workload intensity, and thus directly affects the
task waiting time and job completion time.

We enhance Hawk and Eagle job schedulers with Dice, and
compare P50, P75, and P90 job completion delay performance with
the original Hawk and Eagle schedulers respectively. Every 60
seconds, Dice collects and aggregates the task waiting time of short
jobs from worker nodes and computes the mean task waiting time.
In Dice’s configuration, Elastic Sizing employs Linear model and
sets the upper bound of the short partition to 10%, 17%, and 25%

ICPP 2019, August 5-8, 2019, Kyoto, Japan

Table 2: Trace characteristics

Trace Total jobs | Short jobs | Task-seconds of short
jobs
Yahoo 24,262 90.6% 2%
Cloudera 21,030 95.0% 9%
Google 506,546 90.0% 17%

for Yahoo, Cloudera, Google traces respectively. This makes room
for the short partition size adjustment be a fixed 8% of the cluster
size. Opportunistic Preemption employs Square model and sets
multiplier to 1.0x.

6.2 Results

Figure 10 plots normalized job-completion-delay performance for
Hawk and Eagle schedulers enhanced with Dice under Yahoo trace
as a function of varying numbers of nodes. From Figures 10a and
10c, we can see that Dice consistently and significantly improves
the latencies of short jobs. First, for the 3,000-node cluster config-
uration, Dice achieves 91.4%, 83.6%, and 74.4% improvement on
P50, P75, and P90 job completion delays of short jobs in Hawk
respectively, as well as 97.4%, 82.3%, and 74.9% improvement on
those in Eagle respectively. The reason for such a surprisingly sig-
nificant improvement is that, the task waiting time of short jobs
is kept extremely high under saturated load, and thus Dice has to
activate both Elastic Sizing and Opportunistic Preemption during
the simulation. In other words, high latency of short jobs dictates
Dice to maximize the short partition size and proactively preempts
resources from long tasks under heavy load to shorten job comple-
tion delay of short jobs. On the other hand, we can also see that
P50 job completion delay of long jobs is lengthened by 14.3% in
Hawk and 8.0% in Eagle. We believe, prioritizing short jobs over
long jobs in Dice is imperative to guarantee responsiveness of short
jobs under heavy or even saturated loads.

Second, under medium-heavy load (4000 nodes), Dice achieves
17.7%, 26.0%, and 38.3% improvement on P50, P75, and P90 job
completion delays of short jobs in Hawk respectively, as well as
4.1%, 8.7%, and 34.0% improvement on those in Eagle respectively.
We can also see that 8.9%/2.4% longer P90 job completion delay of
long jobs in Hawk/Eagle respectively is traded for such performance
improvement for short jobs.

Third, it is clear that performance gains for short jobs decrease
with the increase of cluster size. This is expected that lower work-
load intensity as a result of the bigger scale of a cluster reduces the
chances of high task waiting time of short jobs, and Dice has fewer
chances to activate Elastic Sizing and Opportunistic Preemption.

We can observe the same patterns from experiment results under
the Cloudera and Google traces, as shown in Figures 11 and 12. More
specifically, for a cluster of 12000 nodes under the Cloudera trace,
Dice achieves 59.1%, 45.0%, and 14.4% improvement on P50, P75,
and P90 job completion delays of short jobs in Hawk respectively,
as well as 27.6%, 57.3%, and 11.5% improvement on those in Eagle
respectively, while lengthening P90 job completion delay of long
jobs by 26.8% in Hawk and 24.7% in Eagle respectively. For a cluster
of 12000 nodes under the Google trace, Dice achieves 50.9%, 54.5%,

Wei Zhou, K. Preston White, and Hongfeng Yu

and 43.5% improvement on P50, P75, and P90 job completion delays
of short jobs in Hawk respectively, as well as 33.2%, 74.1%, and 85.3%
improvement on those in Eagle respectively, while lengthening P50
job completion delay of long jobs by 4.9% in Hawk and P75 job
completion delay of long jobs by 14.6% in Eagle respectively. Overall,
we confirm that in Dice performance gains obtained for short jobs
outweigh performance costs on long jobs.

In order to quantitatively evaluate how Elastic Sizing and Oppor-
tunistic Preemption individually and combinatorially contribute to
performance gains, we conduct experiments of Hawk and Eagle
schedulers enhanced with Elastic Sizing, Opportunistic Preemp-
tion, Dice under the three traces. Figure 13 compares their per-
formance in terms of job completion delay of short jobs. One can
see from Figure 13a, in the case of Hawk under the Yahoo trace,
Dice achieves 5.2%, 12.4%, and 18.5% improvement on P50, P75,
and P90 job completion delay of short jobs respectively compared
with Elastic Sizing, as well as 12.1%, 13.4%, and 21.5% improvement
respectively compared with Opportunistic Preemption. Similarly,
we can also see from Figure 13d, in the case of Hawk under the
Cloudera trace, Dice achieves 3.5%, 0.7%, and —1.4% improvement
on P50, P75, and P90 job completion delays of short jobs respectively
compared with Elastic Sizing, as well as 55.0%, 38.5%, and 15.3%
improvement respectively compared with Opportunistic Preemp-
tion. It clearly indicates that using Elastic Sizing and Opportunistic
Preemption combinatorially is able to deliver more performance
gains than using them individually in most cases. We can observe
the same pattern from experiment results for the Eagle scheduler
and under the Google trace. Even in some cases, the combination of
Elastic Sizing and Opportunistic Preemption causes performance
loss, the performance loss is negligible (the maximum performance
loss we observed from experiment results is —1.4%). This implies
that it is empirically beneficial to deploy both Elastic Sizing and
Opportunistic Preemption in hybrid job schedulers.

7 EXTENDED RELATED WORK

Elastic Sizing. In the context of resource management and job
scheduling, the most similar work to cluster partitioning in hybrid
job schedulers is the node label scheme [2] in YARN [29] and the
floating partition scheme in Slurm [1, 18]. Each node in a cluster
managed by YARN can be tagged with a label representing own-
ership or capacity (e.g., GPU support, memory size) and a group
of nodes with the same label form a sub-cluster. A label can be
set as exclusive or non-exclusive. A sub-cluster labeled as exclusive
can run jobs with the same label only. In a sub-cluster labeled as
non-exclusive, resources can be shared with any jobs in the clus-
ter when idle resources are available. Similarly, a cluster in Slurm
can be partitioned into disjoint sub-clusters as well, and Slurm’s
floating partition scheme can be used to share idle resources across
partitions. Node label and floating partition are a static partitioning
approach, and they are meant to share and leverage idle resources.
In contrast, Elastic Sizing is a dynamic partitioning and node con-
version approach, which dynamically and adaptively adjusts the
short and general partition sizes according to the task waiting time
of short jobs, even there are no idle resources. In addition, the basic
idea of Elastic Sizing can be easily extended to YARN and Slurm.

Improving Short Job Latency Performance in Hybrid Job Schedulers with Dice

Job Completion Delay Normalized to Hawk

ICPP 2019, August 5-8, 2019, Kyoto, Japan

Job Completion Delay Normalized to Hawk

Job Completion Delay Normalized to Hawk

Job Completion Delay Normalized to Hawk

Job Completion Delay Normalized to Hawk

Job Completion Delay Normalized to Eagle
Job Completion Delay Normalized to Eagle

—— PS5O —— P75 -x%- P90 —e— PS50 —+— P75 -x- P90 —e— P50 —+— P75 -x- P90 —e— P50 —+— P75 -x- P90
3000 4000 5000 o 3000 4000 5000 3000 4000 5000 o 3000 4000 5000
Number of Worker Nodes Number of Worker Nodes Number of Worker Nodes Number of Worker Nodes
(a) Short jobs in Hawk (b) Long jobs in Hawk (c) Short jobs in Eagle (d) Long jobs in Eagle

Figure 10: Job completion delays for Dice normalized to Hawk and Eagle under Yahoo trace

Job Completion Delay Normalized to Hawk

Job Completion Delay Normalized to Eagle
Job Completion Delay Normalized to Eagle

—— P50 —+— P75 -x- P90 —e— PS50 —— P75 -x%- P90 —o— P50 —— P75 —s— P50 —+— P75 -x- P90
11000 13000 ! 11000 13000 11000 13000 * 11000 13000
Number of Worker Nodes Number of Worker Nodes Number of Worker Nodes Number of Worker Nodes
(a) Short jobs in Hawk (b) Long jobs in Hawk (c) Short jobs in Eagle (d) Long jobs in Eagle

Figure 11: Job completion delays for Dice normalized to Hawk and Eagle under Cloudera trace

Job Completion Delay Normalized to Hawk

¥

Job Completion Delay Normalized to Eagle
Job Completion Delay Normalized to Eagle

—e— PSO —— P75 - P90| —e— P50 —~— P75 -x%- P90 T —s— P50 —— P75 -x- P90 —s— P50 —— P75 -x- P90
11000 1200 13000 ¢ 11000 120 13000 11000 1200 13000 11000 1200 13000
Number of Worker Nodes Number of Worker Nodes Number of Worker Nodes Number of Worker Nodes
(a) Short jobs in Hawk (b) Long jobs in Hawk (c) Short jobs in Eagle (d) Long jobs in Eagle

Figure 12: Job completion delays for Dice normalized to Hawk and Eagle under Google trace

=2 P50

vl
=3 P90

= P75

=2 P50

Job Completion Delay Normalized to Hawk

AN I
0 P75 = PO

Job Completion Delay Normalized to Hawk

A

0 #75

NS /N
0 P75 B Po0

P50 =1 P90 =2 P50

Job Completion Delay Normalized to Eagle

Job Completion Delay Normalized to Eagle
Job Completion Delay Normalized to Eagle

AONOSONNNANN

Elost SN i preempton Oice

opp¢

Scheme

Scheme

oSS e preemton Oce

jzing won pice

Elastic 517 nistic Preem?t

opport
Scheme

elastic ST nisic preemPOn DICE I i O

stic SZNY preemption Dice
op¢ = opporturistic P

Scheme Scheme Scheme

(a) Short jobs in Hawk (b) Short jobs in Hawk (c) Short jobs in Hawk (d) Short jobs in Eagle (e) Short jobs in Eagle (f) Short jobs in Eagle

under Yahoo

under Cloudera

under Google

Opportunistic Preemption. Task preemption has been widely
used in major job schedulers and cluster managers like YARN [29],
Mesos [17], Kubernetes [6], Slurm [1] for enforcement of job prior-
itization. For node label in YARN, a labeled job requesting labeled
resources can preempt non-labeled jobs on labeled nodes. Big-C [9]
implements a low-overhead task preemption mechanism via the
container technique and then develops a preemptive job scheduler

under Yahoo under Cloudera under Google

Figure 13: Job completion delays for Elastic Sizing, Opportunistic Preemption, and Dice normalized to Hawk and Eagle

to prioritize short jobs over long jobs. Built on top of the container-
based task preemption in Big-C, Kairos [15] proposes a two-layer
scheduling framework to address head-of-line blocking problem of
short jobs: one centralized scheduler for coarse-grained load balanc-
ing and local scheduler on every node for achieving Least Attained
Service (LAS). In particular, local scheduler preempts the running
task that has the highest LAS time when a new task arrives. When
the time quota of the running task expires, local scheduler suspends

ICPP 2019, August 5-8, 2019, Kyoto, Japan

the task and resumes a task with the least LAS time waiting in the
task queue. Different from the always-on task preemption in Big-
C and Kairos, Opportunistic Preemption is activated on demand,
when the mean task waiting time of short jobs is high, to avoid the
non-trivial task suspension and resumption overheads and JVM
warmup overhead due to preemption.

8 CONCLUSIONS AND FUTURE WORK

In this paper, we propose Dice, a general performance optimiza-
tion approach for state-of-the-art hybrid job schedulers to address
the high-latency issue of short jobs due to the bursty nature of
workloads in large-scale enterprise data centers. Dice keeps track
of the task waiting time of short jobs, and deploys Elastic Sizing
and Opportunistic Preemption schemes to optimize job completion
delays of short jobs. In particular, Elastic Sizing dynamically and
adaptively increases the short partition size to accommodate long
task waiting time of short jobs due to the shortage of resource
reservation for short jobs, while Opportunistic Preemption pre-
empts resources from long tasks running in the general partition
on demand, so as to mitigate the head-of-line blocking problem.
Trace-driven experiments show that Dice is able to achieve signifi-
cant performance gains for short jobs with acceptable performance
costs to long jobs.

In the future, we plan to implement a prototype of Dice on the
open-source Hadoop YARN job scheduler to evaluate Dice perfor-
mance in real-world environments.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their constructive sugges-
tions on this paper. This research has been partially supported by
the National Science Foundation through grants I1S-1423487, ICER-
1541043, and IIS-1652846. The contents do not necessarily reflect
the views and policies of the funding agencies and do not mention
of trade names or commercial products constitute endorsement or
recommendation for use.

REFERENCES

[1] 2019. Slurm Workload Manager. http://slurm.schedmd.com/.

[2] 2019. YARN Node Labels. https://hadoop.apache.org/docs/r2.7.3/hadoop-
yarn/hadoop-yarn-site/NodeLabel.html.

[3] George Amvrosiadis, Jun Woo Park, Gregory R. Ganger, Garth A. Gibson, Elis-
abeth Baseman, and Nathan DeBardeleben. 2018. On the diversity of cluster
workloads and its impact on research results. In USENIX Annual Technical Con-
ference (USENIX ATC ’18).

[4] Ganesh Ananthanarayanan, Christopher Douglas, Raghu Ramakrishnan, Sriram
Rao, and Ion Stoica. 2012. True Elasticity in Multi-Tenant Data-Intensive Compute
Clusters. In ACM Symposium on Cloud Computing (SoCC ’12).

[5] Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jingren Zhou, Zhengping Qian,
Ming Wu, and Lidong Zhou. 2014. Apollo: Scalable and Coordinated Scheduling
for Cloud-Scale Computing. In 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI '14).

[6] Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and John Wilkes.

2016. Borg, Omega, and Kubernetes. ACM Queue 14 (2016).

Paris Carbone, Stephan Ewen, Seif Haridi, Asterios Katsifodimos, Volker Markl,

and Kostas Tzoumas. 2015. Apache Flink: Stream and Batch Processing in a

Single Engine. Bulletin of the IEEE Computer Society Technical Committee on Data

Engineering (2015).

[8] Chen Chen, Wei Wang, and Bo Li. 2018. Performance-Aware Fair Scheduling:
Exploiting Demand Elasticity of Data Analytics Jobs. In IEEE International Con-
ference on Computer Communications (INFOCOM ’18).

[9] Wei Chen, Jia Rao, and Xiaobo Zhou. 2017. Preemptive, Low Latency Data-
center Scheduling via Lightweight Virtualization. In USENIX Annual Technical
Conference (USENIX ATC ’17).

[7

[

[10

[11

[12

=
&

(14

[15

[16

[17

=
&

[19

[20

[21]

[22

[23

™
=)

[25

[26

[27

[29]

@ 'w
- o

Wei Zhou, K. Preston White, and Hongfeng Yu

Yanpei Chen, Sara Alspaugh, and Randy Katz. 2012. Interactive Query Process-
ing in Big Data Systems: A Cross-Industry Study of MapReduce Workloads. In
International Conference on Very Large Data Bases (VLDB ’12).

Yanpei Chen, Archana Ganapathi, Rean Griffith, and Randy Katz. 2011. The
Case for Evaluating MapReduce Performance Using Workload Suites. In IEEE
19th Annual International Symposium on Modelling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS ’11).

Brian Cho, Muntasir Rahman, Tej Chajed, Indranil Gupta, Cristina Abad, Nathan
Roberts, and Philbert Lin. 2013. Natjam: Design and Evaluation of Eviction
Policies For Supporting Priorities and Deadlines in Mapreduce Clusters. In ACM
Symposium on Cloud Computing (SoCC ’13).
Pamela Delgado. 2017. Hawk/Eagle simulator.
labos/eagle/tree/master/simulation.

Pamela Delgado, Diego Didona, Florin Dinu, and Willy Zwaenepoel. 2016. Job-
aware Scheduling in Eagle: Divide and Stick to Your Probes. In ACM Symposium
on Cloud Computing (SoCC ’16).

Pamela Delgado, Diego Didona, Florin Dinu, and Willy Zwaenepoel. 2018. Kairos:
Preemptive Data Center Scheduling Without Runtime Estimates. In ACM Sympo-
sium on Cloud Computing (SoCC ’18).

Pamela Delgado, Florin Dinu, Anne-Marie Kermarrec, and Willy Zwaenepoel.
2015. Hawk: Hybrid Datacenter Scheduling. In USENIX Annual Technical Confer-
ence (USENIX ATC ’15).

Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D.
Joseph, Randy Katz, Scott Shenker, and Ion Stoica. 2011. Mesos: A Platform for
Fine-Grained Resource Sharing in the Data Center. In 8th USENIX Conference on
Networked Systems Design and Implementation (NSDI ’11).

Morris Jette and Mark Grondona. 2003. SLURM: Simple Linux Utility for Resource
Management. In ClusterWorld Conference and Expo.

Marcel Kornacker, Alexander Behm, Victor Bittorf, Taras Bobrovytsky, Casey
Ching, Alan Choi, Justin Erickson, Martin Grund, Daniel Hecht, Matthew Jacobs,
Ishaan Joshi, Lenni Kuff, Dileep Kumar, Alex Leblang, Nong Li, Ippokratis Pandis,
Henry Robinson, David Rorke, Silvius Rus, John Russell, Dimitris Tsirogiannis,
Skye Wanderman-Milne, and Michael Yoder. 2015. Impala: A Modern, Open-
Source SQL Engine for Hadoop. In 7th Biennial Conference on Innovative Data
Systems Research (CIDR ’15).

Jack Li, Calton Pu, Yuan Chen, Vanish Talwar, and Dejan Milojicic. 2015. Im-
proving Preemptive Scheduling with Application-Transparent Checkpointing in
Shared Clusters. In ACM/IFIP/USENIX Middleware Conference (Middleware ’15).
David Lion, Adrian Chiu, Hailong Sun, Xin Zhuang, Nikola Grcevski, and Ding
Yuan. 2016. DonaAZt Get Caught in the Cold, Warm-up Your JVM: Understand
and Eliminate JVM Warm-up Overhead in Data-Parallel Systems. In 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI ’16).

Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shiv-
akumar, Matt Tolton, and Theo Vassilakis. 2010. Dremel: Interactive Analysis of
Web-Scale Datasets. In 36th International Conference on Very Large Data Bases
(VLDB ’10).

Kay Ousterhout, PatrickWendell, Matei Zaharia, and Ion Stoica. 2013. Sparrow:
Distributed, Low Latency Scheduling. In 24th ACM Symposium on Operating
Systems Principles (SOSP ’13).

Charles Reiss, Alexey Tumanov, Gregory R. Ganger, Randy H. Katz, and Michael A.
Kozuch. 2012. Heterogeneity and Dynamicity of Clouds at Scale: Google Trace
Analysis. In ACM Symposium on Cloud Computing (SoCC ’12).

Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and John Wilkes.
2013. Omega: Flexible, Scalable Schedulers for Large Compute Clusters. In ACM
European Conference on Computer Systems (EuroSys 13).

Bikash Sharma, Victor Chudnovsky, Joseph L. Hellerstein, Rasekh Rifaat, and
Chita R. Das. 2011. Modeling and Synthesizing Task Placement Constraints in
Google Compute Clusters. In ACM Symposium on Cloud Computing (SoCC ’11).
Prashanth Thinakaran, Jashwant Raj Gunasekaran, Bikash Sharma, Mahmut Tay-
lan Kandemir, and Chita R. Das. 2017. Phoenix: A Constraint-aware Scheduler for
Heterogeneous Datacenters. In 37th IEEE International Conference on Distributed
Computing Systems (ICDCS ’17).

Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh M.
Patel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade, Maosong Fu, Jake Donham,
Nikunj Bhagat, Sailesh Mittal, and Dmitriy Ryaboy. 2014. Storm@twitter. In
ACM SIGMOD International Conference on Management of Data (SIGMOD ’14).
Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas, Sharad Agarwal, Ma-
hadev Konar, Robert Evans, Thomas Gravesy, Jason Lowey, Hitesh Shah, Sid-
dharth Seth, Bikas Saha, Carlo Curino, Owen O’Malley, Sanjay Radia, Benjamin
Reed, and Eric Baldeschwieler. 2013. Apache Hadoop YARN: Yet Another Re-
source Negotiator. In ACM Symposium on Cloud Computing (SoCC ’13).

Tom White. 2015. Hadoop: The Definitive Guide, 4th Edition. O’Reilly Media Inc.
Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2012.
Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Clus-
ter Computing. In 9th USENIX Symposium on Networked Systems Design and
Implementation (NSDI ’12).

https://github.com/epfl-

	Abstract
	1 Introduction
	2 Background and Motivations
	2.1 Background
	2.2 Motivations

	3 Elastic Sizing
	3.1 Impact of Short Partition Size
	3.2 Elastic Sizing
	3.3 Searching Key Parameter Space

	4 Opportunistic Preemption
	4.1 Task Preemption
	4.2 Opportunistic Preemption
	4.3 Searching Key Parameter Space

	5 Putting It All Together: Dice
	6 Performance Evaluations
	6.1 Experimental Setup
	6.2 Results

	7 Extended Related Work
	8 Conclusions And Future Work
	Acknowledgments
	References

